The Formation of Excited Ethane in the Tritium Recoil Labelling Reaction

By A. J. JOHNSTON, D. MALCOLME-LAWES, D. S. URCH, and M. J. WELCH* (Queen Mary College, London, E.1)

RECOIL tritium atoms $[{}^{3}\text{He}(n,p)\text{T}]$ can react with gaseous hydrocarbons by hydrogen replacement; labelled radicals are also formed.¹ Wolfgang *et al.*² have suggested that such radicals may be formed by a unique hot reaction in which two groups are simultaneously displaced (double-knock) whilst Rowland³ believes them to originate from the decomposition of a molecule excited by the labelling process.

The reaction of recoil tritium atoms with ethane was studied⁴ in the presence of bromine scavenger using different pressures of ethane, bromine, and helium-3 (see Table). In all cases the total neutron dose was (1.05 \pm 0.05) \times 10¹⁵ n cm.⁻² and analyses were delayed until the bromine activity was negligible. In a series of four tubes (B), in which the ethane-to-bromine ratio was held approximately constant and in which, therefore, the hot tritium atoms' energy distribution was also approximately constant,⁵ it was found that $R = (activity in CH_2TBr)/(activity in C_2H_5T)$ was not constant. This shows that CH2T. (assumed precursor of CH₂TBr) was not formed by a "double-knock" hot reaction. A comparison of tubes with similar ethane pressures shows that R is Further this result shows, since bromine also acts as a moderator,⁵ that CH_2TBr and C_2H_5T are both formed from tritium atoms of similar energies. All

these observations are consistent with CH_2T . radicals being formed from the unimolecular decomposition of excited C_2H_5T .

TABLE										
Tube number Tube contents ^a :	B2	B 3	T19	M34	T22	B4	T21	T23	B7	T 24
C ₂ H ₆ Br ₂ ³ He <i>R</i>	173·8 11·8 9·7 0·331	98·5 6·7 10·2 0·384	91·0 2·1 2·4 0·405	73·7 7·0 2·7 0·414	53·9 22·1 2·0 0·410	48·2 2·9 10·3 0·458	23·9 35·4 2·1 0·480	$11.0 \\ 36.3 \\ 2.4 \\ 0.510$	6·76 0·8 9·6 0·500	4·33 33·1 2·3 0·535

^a all pressure in cm. Hg.

insensitive to changes in bromine pressure. Thus the formation of CH_2TBr from a reaction between C_2H_5T (excited) and bromine may be discounted. To analyse the results it is necessary to assume that only a fraction f_2 of the labelled ethane molecules have enough energy of excitation (E^*) to

* Present address (M.J.W.): Brookhaven National Laboratory, Upton, New York, U.S.A.

have the chance of unimolecular decomposition, thus, [since D (C-C) ethane = 3.7 ev],

$$f_1 \quad C_2H_5T^* \longrightarrow C_2H_5T$$
$$(E^* < 3.7eV)$$

$$f_{2} = C_{2}H_{5}T^{**} + C_{2}H_{6} + C_{2}H_{6} + C_{2}T^{*} + Br^{*}).$$

$$C_2H_5T^* + C_2H_6^*$$

$$(3.7ev < E^* < 7.4ev)$$

$$(f_1 + f_2 = +1)$$

Then $(R)^{-1} = f_1/f_2 + (k_2/k_1f_2) p$, where p is pressure of ethane.

The straight line in the Figure indicates accord with the proposed kinetic scheme. 65.5% (= 100 f_1) of the labelled ethane molecules do not have the excitation energy ever to undergo a unimolecular decomposition. For the other 34.5%, $(k_1/k_2) =$ 433 cms. Following Marcus⁶ and assuming the bimolecular rate constant to be $Z\lambda$, and taking Z to be 5 imes 10⁷ cm.⁻¹ sec.⁻¹, than $k_1 = 2.17 \times 10^{10} \lambda$ sec.-1, which corresponds to an average half-life for excited C_2H_5T of 32 $\mu\mu$ secs. and $E^* \sim 5 ev$ if λ (the efficiency of the deactivating collison) = +1. Since it seems unreasonable to suppose that all the $C_{2}H_{5}T^{**}$ molecules will have the same E^{*} and since for each E^* there will be a corresponding value of k_1/k_2 , these results represent values averaged over all the excited molecules.

(Received, February 7th, 1966; Com. 079.)

(a) F. Schmidt-Bleck and F. S. Rowland, Angew. Chem. Internat. Edn., 1964, 3, 769; (b) R. Wolfgang, Progr. Reaction Kinetics, 1965, 3, 99.

² D. S. Urch and R. Wolfgang, J. Amer. Chem. Soc., 1961, 83, 2982, R. Wolfgang, Scientific American, 1966, No. 1, 82; also Ref. 1 (b), p. 148.

³ E. K. C. Lee and F. S. Rowland, J. Amer. Chem. Soc., 1963, 85, 897.

⁴ D. S. Urch and M. J. Welch, Trans. Faraday Soc., 1965, 61, 1411. ⁵ P. J. Estrup and R. Wolfgang, J. Amer. Chem. Soc., 1960, 82, 2661; A. H. Rosenburg and R. Wolfgang, J. Chem. Phys., 1964, 41, 2159.

⁶ R. A. Marcus, J. Chem. Phys., 1952, 20, 352, 355, 359, 364.